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TD 8469

WAVEVECTOR-FREQUENCY SPECTRAL ESTIMATION:
A REVIEW OF CONVENTIONAL SIGNAL PROCESSING TECHNIQUES

INTRODUCTION

Experimental determination of the statistics of fields that vary randomly in space

and time is a problem of practical interest in many branches of acoustics. One

fundamental descriptor of such random space-time fields is the wavevector-frequency

spectrum.

This paper reviews a technique for estimating the wavevector-frequency

spectrum from measured data. This technique parallels one developed by electrical

engineers for estimating the frequency spectrum of fields that vary only with time.

The purpose of this review is not to promote a particular measurement technique, but

to illustrate the variety of signal processing issues that must be addressed in the

estimation of wavevector-frequency spectra.

DEFINITIONS

We begin with some definitions. Slide 1 illustrates a pressure field at the surface

of a plane defined by the x1 and x2 axes. Although a pressure field is used for purposes

of illustration, the field could just as well be acceleration, stress, or any other physical

quantity of interest.

The correlation of the pressure field over the plane of interest is defined as the

average value, over many repetitions of the measurement, of the product of (1) the

pressure at the vector location x and time t and (2) the pressure at the location x + E

and time t + x. The average over the ensemble of experiments is denoted by E.

In general, the correlation is a function of (1) the absolute spatial position and

time of one observation of the pressure and (2) the spatial separation vector and time

difference between observations. If the correlation and all other statistical moments

are independent of the absolute time of observation, t, the field is said to be stationary.
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SLIDE 1

SPACE-TIME CORRELATION OF THE PRESSURE FIELD (OQP)
Qpp(, , t, ) =E i P (x, t)p (x + , t + )l

STATIONARY FIELD (CORRELATION INDEPENDENT OF ABSOLUTE TIME, t)
Opp) (x, I, t, 'T) = Opp (_x, E. 7)

HOMOGENEOUS FIELD (CORRELATION INDEPENDENT OF ABSOLUTE SPATIAL POSITION, x)
Qpp (6, _Z, t, T)=QOpp (E. t. 7')

HOMOGENEOUS AND STATIONARY FIELD (CORRELATION INDEPENDENT OF x AND t)
Qp (, _f, It, r)=Qpp( , 'r)

Similarl, tf the correlation is independent of the absolute spatial location of the

observatic n, x, the field is said to be homogeneous.

We 1ll restrict our attention to stationary fields so that the correlation will have

the functi nal form of either the second or fourth expressions shown on this slide.

The wavevector-frequency spectrum is defined as the Fourier transform of the

correlatin field in both space and time, as shown in slide 2.

For a homogeneous and stationary pressure field, the wavevector-frequency

spectrum s obtained by the Fourier transformation of the correlation field on the

spatial separation vector, , and the time difference, r, as shown at the top of this

slide. Here, 0 denotes the wavevector-frequency spectrum of the pressure field andp
the superscript H designates a homogeneous field.
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SLIDE 2

DEFINITIONS OF WAVEVECTOR-FREQUENCY SPECTRA

STATIONARY-HOMOGENEOUS FIELD

(pH (k.w)= Q r) exp{-,(kok+w r)jd dr

STATIONARY-NONHOMOGENEOUS FIELD

SPACE-VARYING SPECTRUM (Kp)

Kp(x, k. w)- I Qpp(x I t r) exp I- i(k.k + w7)] dkdr

a -C

SPACE-AVERAGED SPECTRUM (I-:)

'F1 (k. w.A) = 1 Kp(x k, w) dx
A

TWO-WAVEVECTOR SPECTRUM (k1p)

kp(,k. k )= Kp(x. k, exp[-i.x] dx

[A{ 1 P21

The wavevector, k, is the Fourier conjugate variable of the spatial separation

vector, , and the circular frequency, (, is the conjugate variable of the time

difference, r.

For a stationary, nonhomogeneous pressure field, three alternative forms of the

wavevector-frequency spectrum can be defined. The space-varying spectrum,

designated by Kp, is defined by the same multiple Fourier transformation of the
correlation field that was used for defining the homogeneous spectrum. However,

because the nonhomogeneous correlation field depends on the absolute spatial vector, x,

the space-varying spectrum also varies with x.

The space-averaged spectrum, 0p, is defined as the average value of the

space-varying spectrum over some area, A, in absolute space.

The two-wavevector-frequency spectrum, designated by Kp, ILuoduces a second

wavevector variable, u, by an additional Fourier transformation of the correlation

3
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field. This second wavevector is the Fourier conjugate variable of the absolute spatial

vector, x.

Note that all definitions of wavevector-frequency spectra assume knowledge of

the correlation field over all space and time. In practice, however, we can measure

only samples of a physical field over some finite limits in space and time. Therefore,

we cannot measure the exact wavevector-frequency spectrum of a space-time field.

Rather, we can only obtain some estimate of it.

4
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CONVENTIONAL SIGNAL PROCESSING APPROACH

The problem of estimating the wavevector-frequency spectrum from a sampling

of the space-time field is similar to the problem faced by electrical engineers in

estimating the frequency spectrum of a temporal field from time samples of that field.

The electrical engineers have developed a variety of signal processing techniques to

address this problem. One of these techniques is digital signal processing.

SLIDE 3

DIGITAL SIGNAL PROCESSING APPROACH TO
FREQUENCY SPECTRAL ESTIMATION

LOW-PASS _ TIME
FILTER SAMPLING:

A

LOW-PASS I TIME t

e2 I) - j FILTER SAMPLING

R e-

VOLTAGE FROM I SPECTRAL

' EXPERIMENT T ESTIMATE

H

M

L_.P&S I IMPIG
FILTER SAMPLING

QUALITY OF THE SPECTRAL ESTIMATE
SOME ALGORITHMS LEAD TO A SIMPLE RELATIONSHIP BETWEEN THE MEAN OF THE

SPECTRAL ESTIMATE. E e(}. AND THE TRUE FREQUE , :FECT-ru. f -,-, % -A

RELATIONSHIP ALLOWS THE OUALITY OF THE SPECTRAL ESTIMATE TO BE ASSESSED

A block diagram of the digital signal processing approach to estimating the

frequency spectrum of a voltage field, e(t), is shown at the top of slide 3.

Here, in each of the J repetitions of the same experiment, the measured voltage,

e .(t), is first low-pass filtered and then sampled at uniform intervals over some finite

duration of time. The resulting ensemble of data is then input to a digital computer,

5
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where a computational algorithm is used to obtain a spectral estimate. Here the tilde

is used to differentiate the spectral estimate from the true spectrum.

For some spectral estimation algorithms, it is possible to relate the mean of the

spectral estimate to the true frequency spectrum and the frequency responses

associated with the low- pass filter and the temporal sampling. In such cases, it is often

possible to assess the quality of the spectral estimate: that is, how closely the spectral

estimate approximates the true spectrum.

The conventional approach to estimating the wavevector-frequency spectrum of a

space-time field simply extends this digital signal processing approach to include the

spatial variation of the field. That is, the field of interest is sampled at uniform

intervals of space as well as time, and the spectral estimation algorithms are modified

to accommodate the wavevector dependence of the spectrum.

6
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WAVEVECTOR -FREQUENCY SPECTRAL ESTIMATION

To illustrate this approach, consider the problem of estimating the wavevector-

frequency spectrum of a pressure field over a planar surface. It is assumed that this

pressure field is known to be statistically stationary.

SPATIAL SAMPLING

The spatial sampling of the surface pressure field is illustrated in slide 4. Here.

the pressure is sampled over the plane of interest by a rectaxgular array of sensors.

The sensors are evenly spaced in both the xIand x2coordinate directions.

SLIDE 4

SPATIAL SAMPLING
0 / _M- ELEM ENT S--7'

-xi

N-ELEMENTS....., SENSOR

.7--
S h 2

OUTPUT VOLTAGE OF SENSOR AT Xm, = [(m - 1)hj, (n - 1)h2]

elx,,. tI= g(y. 9) p(Xmn-yt- ) dy do

DATA AVAILABLE AFTER SPATIAL SAMPLING
0< In M - I

eMh, "2, 0 On <N-1
1 1 je)(mh , nh 2  t)0<I <I,
0o<t <t,

WJHERE J IS THE NUMBER OF REPETITIONS OF THE EXPERIMENT

7
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Each sensor converts the pressure acting over its active face to a voltage,

denoted by e. The sensors are assumed to be linear, causal devices with identical

space-time impulse responses. The relation between the output voltage of a sensor

located at xmn , the pressure field, and the impulse response of the sensor, g, is shown

in the center of this slide.

if. in each repetition of the measurement, the outputs of all sensors are observed

over the time interval 0 to t 1 . the data available after the spatial sampling are shown

at the bottom of this slide. Here again, the subscript j indicates the j-th repetition of

the experiment.

TEMPORAL SAMPLING

The temporal processing of the output from each sensor is identical to that

described previously. As shown at the top of slide 5, the output voltage from each

SLIDE 5

TEMPORAL PROCESSING
LOW-PASS FILTERING

e, (rnh1, nh 2 . 0 - h(r) f,- (Mh 1. nh2, 1)

C.;TPUT VOLTAGE FILTERED OUTPUT
FROM mn'l SENSOR FROM mnth SENSOR

(Il(rrh 1, nh 2 . 0) h(r) el (Mh 1 . nh 2 . I -r) d r

TEMPORAL SAMPLING

C

- I

0

R SAMPLES

DATA AVAILABLE FOR SPECTRAL ESTIMATE
0<m<M -1

1i(mh, nh 2 , rT) 0<r <R-1

8<<1 <_J

-- - - • I I I I8
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sensor is first low-pass filtered. The filtered sensor output, designated by c , is related

to the unfiltered output voltage, ej, and the impulse response of the filter, h( ), by the

expression shown below the block diagram.

The filtered sensor outputs from the array are then sampled simultaneously at

periodic intervals in time, as illustrated in the center of the slide.

This sampling process is repeated for each repetition of the experiment, resulting

in the ensemble of data shown at the bottom of the slide. These data are input to an

algorithm that performs the spectral estimate.

THE ALGORITHM

As indicated in slide 6, the algorithm is the specific computational procedure that

produces the spectral estimate from the ensemble of space-time samples of the field.

It is at this stage of the signal processing that one must decide (1) whether the field is

homogeneous or nonhomogeneous and (2) which of the various forms of the

wavevector-frequency spectrum is to be estimated.

SLIDE 6

THE ALGORITHM
DEFINITION:

COMPUTATIONAL PROCEDURE USED TO CONVERT ENSEMBLE OF
SPACE-TIME SAMPLES OF THE FIELD TO AN ESTIMATE OF THE
WAVEVECTOR-FREQUENCY SPECTRUM.

FACTORS INFLUENCING CHOICE OF ALGORITHM:
1) HOMOGENEITY OF FIELD

CHOICE OF SPECTRAL FORM

2) TRADE-OFFS
RESOLUTION VERSUS COMPUTATIONAL SPEED AND
STABILITY

ABILITY TO RELATE THE MEAN SPECTRAL ESTIMATE TO
TRUE SPECTRUM.

9
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There are often several alternative algorithms for the estimation of a particular

spectral form. These alternative algorithms offer various trade-offs between spectral

resolution, stability, computational speed, and complexity. In addition, some algorithms

allow the mean of the spectral estimate to be mathematically related to the true

spectrum of the field.

The ability to relate the mean of the spectral estimate to the true spectrum of

the field of interest is an important factor in the selection of an algorithm. Such a

relationship can be used either in hindsight, to assess the quality of a spectral estimate,

or in foresight, to design a measurement system that will enhance the probability of a

high quality spectral estimate.

1

10



TD 8469

THE EXAMPLE

To illustrate the benefits of such a relationship, we consider the estimation of the

wavevector-frequency spectrum of a planar pressure field that is both stationary and

homogeneous.

SLIDE 7

SPECTRAL ESTIMATE FOR A STATIONARY-HOMOGENEOUS
PRESSURE FIELD

THE ALGORITHM:

J

Mh, Nh2 RTJ

WHERE

M-i N-I R-I

el(k. w) hjh 2TE I F, f, e(M1, nh2, t) exp f-(kfmh*-k 2n 2 +wrT)j
m-0 n0 r-0

AND

4 IS THE ESTIMATE OF THE WAVEVECTOR-FREOUENCY SPECTRUM OF THE LOW-PASS

FILTERED OUTPUT VOLTAGE FIELD

j S THE LOW-PASS-FILTERED OUTPUT VOLTAGE FROM A SENSOR

I DENOTES SAMPLES FROM THE jit REPETITION OF THE EXPERIMENT

Recall that the data available for this spectral estimate are the ensemble of time

samples of the low-pass filtered output voltages, ej, from the M-by-N array of sensors

used to sample the pressure field. Therefore, the only wavevector-frequency spectrum

that we can estimate is that of the filtered output voltage field. The algorithm used to

estimate this stationary, homogeneous wavenumber-frequency spectrum is shown at the

top of slide 7. Here, we see that the spectral estimate is proportional to the squared

magnitude of the discrete Fourier transform, in both wavevector and frequency, of the

samples of the filtered output voltage.

Ii
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SLIDE 8

RELATION BETWEEN THE MEAN OF THE SPECTRAL ESTIMATE AND
THE TRUE SPECTRUM OF THE PRESSURE FIELD

WHERE

G(O Q) IS THE WAVEVECTOR-FREQUENCY RESPONSE OF THE SENSORS, DEFINED BY

Go = g(. r; exp( -i (I. + Qr)1 d dr.

H(ll) IS THE FREQUENCY RESPONSE OF THE LOW-PASS FILTER. DEFINED BY
00

H(U) h b(r) expf - 4I7 dr.

AI',) IS THE WAVEVECTOR RESPONSE OF THE ARRAY, DEFINED BY

M-1 N-1

A('f)= r E exp[-i('ymh1 +' 2nh 2)1' AND

m=O n=O

'7(t!) IS THE FREQUENCY RESPONSE ASSOCIATED WITH THE TEMPORAL

SAMPLING. DEFINED BY
R-1

7(t!.) r exp I - Orl
r=0

By using the relationships shown in previous slides, the mean of the spectral

estimate of the filtered output voltage can be related to the true wavevector-

frequency spectrum of the pressure field. As shown at the top of slide 8. the mean of

the spectral estimate is proportional to the convolution of the true spectrum of the

pressure field, filtered by the wavevector-frequency response of the sensors and the

frequency response of the low-pass filter, with the wavevector response of the array

and the frequency response associated with the temporal sampling.

As indicated on the slide, the wavevector-frequency response of the sensor and

the frequency response of the low-pass filter are appropriate Fourier transforms of the

.mpulse responses of the sensor and the low-pass filter. The wavevector response of

the array and the frequency response associated with the temporal sampling are

discrete Fourier transforms of the spatial and temporal sampling patterns.

12
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The equation relating the mean of the spectral estimate and the true pressure

spectrum cannot be inverted to produce a unique solution for the wavevector-frequency

spectrum of the pressure field. However, under certain conditions, the true spectrum

can be inferred from the mean of the spectral estimate. Let us explore one such set of

conditions by first examining the integral over frequency.

SLIDE 9

/I

FILTERING IN THE FREQUENCY DOMAIN

E ) -( h1h2T I A- -k)2 { l -'.H I)) I G(, 1142lHft )2 11(1 )12 C1
(2.)

3 
MNR- -

IG(- ,?12 IH(Il)l 2

I I - 6_

0 2

- T T DESIRED T T
ALIASED FREQUENCY ALIASED

COMPONENT COMPONENT COMPONENT

IF

It) THE PRODUCT OF +|.H(. it) IG(. JI)I
2

1H(II)1
2 

IS BAND LIMITED IN It SUCH THAT IT IS EFFECTIVELY
ZERO OUTSIDE THE RANGE - r/T l< T AND

(2) THE VARIATION OF THIS PRODUCT WITH It IS SLOW IN COMPARISON TO THE BANDWIDTH 161RT) OF THE
MAJOR LOBE OF THE FREQUENCY RESPONSE ASSOCIATED WITH THE TEMPORAL SAMPLING.

THEN. BY USE OF THE MEAN VALUE THEOREM. E{.I,(k. o)} CAN BE APPROXIMATED BY

E ('|.k. ,2 IGO, J , I , -
(2.)

2 
MN - G ) l -

For reference purposes, the relationship between the mean of the spectral

estimate and the true spectrum is repeated at the top of slide 9, with the integral over

the frequency domain isolated by the braces.

As indicated in this integral, the spectral estimate at the frequency W is obtained

by multiplying the product of the true spectrum, the response of the sensors, and the

response of the low-pass filter by the frequency response associated with the temporal

sampling centered at the frequency of interest. The resultant product is then

integrated over all frequency.

13
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The frequency dependence of the various terms in the integrand are illustrated

below the equation. The dashed line represents the true spectrum, the dotted line

represents the frequency response of the sensor, the broken line represents the response

of the low-pass filter, and the solid line represents the filtering associated with the

temporal sampling.

The frequency response associated with the temporal sampling is a periodic

function of frequency, with major acceptance lobes separated by integer multiples of

21r/T. Thus, when this filter is frequency shifted to sample the product of the true

spectrum, the sensor response, and the low-pass filter at the frequency w, this product

is also sampled at the frequencies associated with the periodic replicates of the primary

acceptance lobe. In the integration over frequency, the samples from these replicates

are added to the sample at w, thereby contaminating the estimate of the spectrum at w.

This contamination is called aliasing.

The purpose of the low-pass filter is to band limit the output voltage of the

sensors such that negligible output occurs at frequencies above w/T and below -ir/T.

With such filtering, the aliased contributions to the spectral estimate are virtually

eliminated.

If, as noted below the illustration,

(1) The product of the true pressure spectrum with the frequency responses of

the sensors and the low-pass filters is band limited to frequencies between

-v/T and i/T and

(2) The variation of this product with frequency is slow compared with the

frequency bandwidth of the primary response lobe of the filter associated

with the temporal sampling,

then, by use of mean value theorem, the integral over frequency can be performed,

yielding the expression shown at the bottom of the slide.

For reference purposes, this expression is repeated at the top of slide 10. Here,

we see that the mean of the spectral estimate is proportional to the integral, over all

14
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SLIDE 10

THE FILTERING IN THE WAVEVECTOR DOMAIN

E{4~k }h~h H4~2 $'(-y Q2) IGOQ )12 LA( k)2 di(2x)2 MN -

/'

IG(-l,. 0. w)12 6"
IA( k, ))1

2  
./ - -

k, 2y- 0 k, 2x

IF: h, h,

(1) THE PRODUCT OF IH(-. Q) JG(. 1)12 IS BAND LIMITED IN Y SUCH THAT
IT IS EFFECTIVELY ZERO OUTSIDE - I/h1 < -Y < r/h 1 AND -T/h 2 < y2 <r/h2 AND

(2) THE VARIATION OF THIS PRODUCT IN IS SLOW IN COMPARISON TO THE WAVEVECTOR
BANDWIDTH (6r/h1 , 6r/h2 ) OF THE PRIMARY RESPONSE LOBE OF THE ARRAY.

THEN, BY USE OF THE MEAN VALUE THEOREM, E {4 V(k, ,)) CAN BE APPROXIMATED BY

wavevectors, of the product of the true pressure spectrum and the wavevector-
frequency response of the hydrophone filtered by the wavevector response of the array
steered to the wavevector k.

The integrand is illustrated below the equation as a function of the wavevector
component yi. Here, because of the periodic nature of the array response, we see the
same potential for aliasing in the wavenumber domain that we saw in the frequency

domain of the previous slide.

In the frequency domain, this aliasing problem was averted by use of the low-pass
filter. In the wavevector domain, the only low-pass-filtering device is the sensor.
Unfortunately, we lack the capability, with current sensor technology, to design and
build low-pass filters that match, in the wavevector domain, the performance of filters

currently available in the frequency domain.

is
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However, if

(1) We choose the array spacing such that, for all practical purposes, the product

of the true pressure spectrum and the wavevector-frequency response of the

sensors is band limited within the limits indicated beneath the illustration and

(2) The variation of this product with y and Y2 is slow in comparison with the

bandwidth components of the primary acceptance lobe of the array,

then we can again use the mean value theorem to show that the mean of the spectral

estimate is related to the true wavevector-frequency spectrum of the pressure field by V

the simple algebraic expression shown at the bottom of the slide.

Here, it is evident that, given knowledge of the wavevector-frequency response of

the sensors and the frequency response of the low-pass filter, the true spectrum of the

pressure field can be deduced from the mean of the estLmated spectrum.

As a consequence of this relationship, we can define what is called an unbiased

estimator of the wavevector-frequency spectrum of the pressure field. This estimator,

given at the top of slide 11, specifies the normalization of the algorithm required to

convert the estimate of the spectrum of the filtered output voltage field to an estimate

of the spectrum of the pressure field. This estimator is called unbiased because the

mean of this spectral estimate is equal to the true spectrum of the pressure field.

Recall that certain assumptions were required to obtain the relationship on which

this unbiased estimate is based. These assumptions define the signal processing

required for this normalized algorithm to produce an unbiased estimatc of the

wavevector-frequency spectrum of the pressure field.

These requirements, which are listed below the definition of the unbiased

estimator, are

(1) The temporal sampling rate (21/T) must be at least twice the cutff

frequency ((c) of the low-pass filter to avoid aliasing in the frequency

domain,

16
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SLIDE 11

UNBIASED ESTIMATOR OF THE SPECTRUM OF
THE PRESSURE FIELD

P . G( , w)12 IH(w)1 2

SIGNAL PROCESSING REQUIREMENTS FOR AN UNBIASED ESTIMATE

(1) THE TEMPORAL SAMPLING RATE (21rT) MUST BE AT LEAST TWICE THE
CUTOFF FREQUENCY (w,) OF LOW-PASS FILTER,

(2) THE SPATIAL SAMPLING RATE IN EACH COORDINATE DIRECTION (2w/h 1 AND 2,rh 2)
MI IT BE AT LEAST TWICE THE CORRESPONDING WAVENUMBER BANDWIDTHS OF
THE PRODUCT 4H(k, ,)IG( , ) 12,

(3) THE FREQUENCY RESOLUTION ASSOCIATED WITH THE TEMPORAL SAMPLING
(6/RT) MUST BE SMALLER THAN ANY VARIATION OF .H (k, ,) WITH
FREQUENCY, AND

(4) THE WAVEVECTOR RESOLUTION OF THE ARRAY (6/Mh 1 , 6/Nh 2) MUST BE SMALLER
THAN ANY VARIATION OF 4 l(k, w) WITH k, AND k2 , RESPECTIVELY.

(2) The spatial sampling rate in each coordinate direction (2ir/h I and 2 2/h2 ) must
be at least twice the corresponding wavenumber bandwidths of the product of

the true pressure spectrum and the wavevector-frequency response of the

sensors,

(3) The frequency resolution associated with the temporal sampling must be
much smaller than any variation of the true spectrum with frequency, and

(4) The wavevector resolution of the array must be much smaller than any
S variation of the true spectrum in the corresponding wavenumber coordinate.

As indicated in slide 12, these signal processing requirements present us with a
dilemma. That is, failure to meet any of these signal processing requirements will
result in a biased estimate of the wavevector-frequency spectrum of the pressure
field. On the other hand, each of these processing requirements assumes some

17
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SLIDE 12

THE DILEMMA
THE SIGNAL PROCESSING REQUIRED FOR AN UNBIASED
SPECTRAL ESTIMATE IS DEFINED FROM SPECTRAL
CHARACTERISTICS OF THE TRUE FIELD OF INTEREST.

THE CONSEQUENCE
UNBIASED SPECTRAL ESTIMATES ARE USUALLY
OBTAINABLE ONLY THROUGH AN ITERATIVE MEASUREMENT
PROCESS.

knowledge of the spectrum that we are trying to estimate. The practical consequence

of this dilemma is that an unbiased spectral estimate can only be obtained through an

iterative process of measurements.

The procedure for estimating the wavevector-frequency spectrum of a

nonhomogeneous, but stationary, field is similar to the one for the homogeneous field.

Here again, the key to obtaining a high quality spectral estimate is to select an

algorithm for the desired spectral form that can, in the mean, be related to that true

spectrum of the field. By this process, it is often possible to define an unbiased

estimator of the field and to determine the signal processing required to obtain that

estimate.

As a final note, it should be recognized that the variance of a spectral estimate is

also an important metric of the quality of the estimate. Unfortunately, time does not

permit a discussion of the variance of the spectral estimate.
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